<strike id="h8tz5"><label id="h8tz5"></label></strike>
    <progress id="h8tz5"></progress>
  1. <strike id="h8tz5"><listing id="h8tz5"></listing></strike>
      <strike id="h8tz5"><label id="h8tz5"></label></strike>
      首頁 園況介紹 科學研究 園林園藝 環(huán)境教育 黨建文化 紀檢監(jiān)察 信息公開 簡報年報
      首頁 > 科學研究 > 研究成果 > 論文

      論文

      The complexity of climate reconstructions using the coexistence approach on Qinghai–Tibetan Plateau

      論文作者

      Zhi-Yong Zhang1,2*, Dong-Mei Cheng1, Cheng-Sen Li2*, Wan Hu1, Xuan-Huai Zhan1 and Hong-Li Ji1

      刊物

      Journal of Palaeogeography

      刊號

      10.1186/s42501-018-0016-0

      摘要

      Quantifying the palaeoclimates of Qinghai–Tibetan Plateau is vital for understanding the uplift history of plateau and the evolution of Asian monsoon since Cenozoic. Recently, the Coexistence Approach (CA) has been employed to reconstruct the palaeoelevation and palaeoclimate of the plateau by several studies. However, the application of CA in mountainous areas and the realism of climate reconstructions via this method are seldom discussed,although the complexity of reconstructions is speculated. Here we reevaluated the realism of climate reconstruction using the CA with modern pollen samples from the Qinghai–Tibetan Plateau, and try to explore the possible factors
      influencing the precipitation and temperature reconstructions by CA. We suggest that the long-distance transport pollen as a result of the Asian summer monsoon potentially significantly affects the reconstructions both for precipitation and temperature. The precipitation complexly interacting with snowmelt and permafrost thaw leads to the discrepancy between the reconstructed precipitation and the real value. The response temperature for blossoming of dwarfed plants on the plateau is mostly likely higher than the air temperature (usually measured at 1.5m above ground) due to energy flux or morphological adaptation of inflorescences during the growing season, causing the distortion of temperature reconstructions. Precipitation reconstruction is notoriously difficult as the establishers of CA have already suggested, but reconstructing the low temperatures may be even more challenging on Qinghai–Tibetan Plateau. Though all of the explorations in current paper are in a qualitative way, it offers an inspiration of how appropriately interpret the disagreements between CA results and the observations, and of how to obtain a reasonable reconstruction of palaeoclimate of the plateau.

       

      The complexity of climate reconstructions using the coexistence approach on Qinghai–Tibetan Plateau.pdf


      亚洲中文字幕在线精品一区,在线试看做受网站,天天做天天摸天天爽精品一区,国产成人愉拍免费视频

        <strike id="h8tz5"><label id="h8tz5"></label></strike>
        <progress id="h8tz5"></progress>
      1. <strike id="h8tz5"><listing id="h8tz5"></listing></strike>
          <strike id="h8tz5"><label id="h8tz5"></label></strike>