<strike id="h8tz5"><label id="h8tz5"></label></strike>
    <progress id="h8tz5"></progress>
  1. <strike id="h8tz5"><listing id="h8tz5"></listing></strike>
      <strike id="h8tz5"><label id="h8tz5"></label></strike>
      首頁 園況介紹 科學研究 園林園藝 環(huán)境教育 黨建文化 紀檢監(jiān)察 信息公開 簡報年報
      首頁 > 科學研究 > 研究成果 > 論文

      論文

      Combined full?length transcriptomic and metabolomic analysis reveals the molecular mechanisms underlying nutrients and taste components development in Primulina juliae

      論文作者

      Yi Zhang1,2?, Endian Yang1,2?, Qin Liu1,2, Jie Zhang1 and Chen Feng1*

      刊物

      BMC Genomic Data

      標識符

      10.1186/s12863-024-01231-z

      摘要

      Background Primulina juliae has recently emerged as a novel functional vegetable, boasting a significant biomass and high calcium content. Various breeding strategies have been employed to the domestication of P. juliae. However,the absence of genome and transcriptome information has hindered the research of mechanisms governing the taste and nutrients in this plant. In this study, we conducted a comprehensive analysis, combining the full-length transcriptomics and metabolomics, to unveil the molecular mechanisms responsible for the development of nutrients and taste components in P. juliae.

      Results We obtain a high-quality reference transcriptome of P. juliae by combing the PacBio Iso-seq and Illumina sequencing technologies. A total of 58,536 cluster consensus sequences were obtained, including 28,168 complete protein coding transcripts and 8,021 Long Non-coding RNAs. Significant differences were observed in the composition and content of compounds related to nutrients and taste, particularly flavonoids, during the leaf development.Our results showed a decrease in the content of most flavonoids as leaves develop. Malate and succinate accumulated with leaf development, while some sugar metabolites were decreased. Furthermore, we identified the different accumulation of amino acids and fatty acids, which are associated with taste traits. Moreover, our transcriptomic analysis provided a molecular basis for understanding the metabolic variations during leaf development. We identified 4,689 differentially expressed genes in the two developmental stages, and through a comprehensive transcriptome and metabolome analysis, we discovered the key structure genes and transcription factors involved in the pathways.

      Conclusions This study provides a high-quality reference transcriptome and reveals molecular mechanisms associated with the development of nutrients and taste components in P. juliae. These findings will enhance our understanding

      of the breeding and utilization of P. juliae as a vegetable.

      Keywords Full-length transcriptomic, Primulina juliae, Nutrients components, Taste components, Molecular mechanisms


      Combined full?length transcriptomic and metabolomic analysis reveals the molecular mechanisms underlying nutrients and taste components development in Primulina juliae.pdf

      亚洲中文字幕在线精品一区,在线试看做受网站,天天做天天摸天天爽精品一区,国产成人愉拍免费视频

        <strike id="h8tz5"><label id="h8tz5"></label></strike>
        <progress id="h8tz5"></progress>
      1. <strike id="h8tz5"><listing id="h8tz5"></listing></strike>
          <strike id="h8tz5"><label id="h8tz5"></label></strike>